Japan to create its bioeconomy from “bio-digital integration” (バイオとデジタルの融合)

The term will serve as a unifying concept leading to “smart cells” of plants and microorganisms by combining genome analysis, genome editing and metabolic engineering of cells supported by robotics, cloud computing, big data informatics and artificial intelligence.  These technologies will allow to modify living cells and improve genomic selection for a wide range of applications in medicine, energy, materials and agriculture. Target organisms will include agricultural plants, livestock, fish and silkworms, and microorganisms used in the production of fermented food, fuel or speciality  products, including process scaling (もの作りmonozukuri = make things).

Details have been summarized in a 44 page report prepared in June 2019 for the EU – Japan Centre, Brussels

Smart drones in a 4G LTE network as airborne police: Japan

NEDO, KDDI, Teradrone and SECOM, utilizing a 4 G LTE standard, conducted security experiments on multiple autonomously flying drones in Kanagawa Prefecture and succeeded in remote patrol security. By remote monitoring of camera images installed in the drones from the...

read more

Dai Nippon Printing: thin and stretchable skin displays

Based on developments at the University of Tokyo (JST ERATO Someya Project*) the company is developing a thin and stretchable skin display which it plans to market within 3 years**. In this device, 16 × 24 px micro light emitting diodes and stretchable wires are...

read more

Low-pressure ammonia synthesis makes progress

The group around Hideo HOSONO at Tokyo Institute of Technology has succeeded to further optimize a catalyst which permits to produce ammonia from molecular nitrogen and hydrogen at relatively mild conditions (400 C, 0.1 MPa = 1 bar). The best catalyst found so far is...

read more


Full content list of all entries in News

Mitsubishi’s Life Science Institute (LSI) will start clinical trial on treatment of spinal cord injury with Muse cells

LSI announced that a domestic clinical trial for spinal cord injury in the subacute phase will be started using the Muse cell product “CL2020”.. The company has been conducting clinical trials already for three other diseases, acute myocardial infarction, cerebral infarction, and epidermolysis bullosa, and aims to apply for approval in 2020 and 2021 for any of the four diseases. Muse cells are pluripotent stem cells discovered by Prof. Mari Dezawa of Tohoku University. They occur in mesenchymal stem cells (MSC) of bone marrow and other organs, and they can differentiate into any ectoderm, mesoderm or endoderm. They can be stored through cryopreservation.

Mitsubishi LSI news release, July 10, 2019

NEDO defines five new topics for “smart cell industry” program

The “smart cell industry” program of NEDO (2016-2020) aims to produce industrial materials from plants and microorganisms in economically viable yields based on metabolic engineering and synthetic biology. The five new topics (2019-2020) are

  • Microbial production of polyamide materials (Toray)
  • Cholesterol esterase derived from recombinant Burkholderia stabilis (Asahi Kasei Pharma)
  • Microbial production of ergothioneine, a rare amino acid (Nagase Sangyo)
  • Soy sauce koji mold with high content of long-chain ceramide (Fukuoka Soy Sauce Brewing Association)
  • Enzyme engineering for production of chemicals with high added value (Amano Enzymes)

NEDO news release, May 7, 2019

High yield production of tetrahydropapaveroline, a pharmaceutical raw material, using synthetic biology and metabolic engineering

The group of Akihiko KONDO at Kobe University has used computer simulations, newly designed metabolic pathways and introduction of an engineered silkworm enzyme into E. coli to produce tetrahydropapaveroline (THP), a precursor compound of various benzylisoquinoline alkaloids which are used as analgesics. The project was carried out within NEDO’s “smart cell industry” program.

NEDO news release, May 7, 2019

Nature Communications (2019) DOI: 10.1038/s41467-019-09610-2

New bio-strategy of government will focus support of private investment in 10 areas

As indicated by Koichi AKAISHI, Chief Policy officer of the Cabinet Office, the government’s new bio-strategy will include support of company investments in the following 10 areas:

(1) high-performance biomaterials

(2) bioplastics

(3) sustainable primary production systems (agriculture)

(4) organic waste and organic wastewater treatment

(5) life improvement, healthcare and functional food

(6) digital medicine

(7) bioproduction systems (medicine, regenerative medicine, cell and gene therapy)

(8) bioproduction system (industrial products)

(9) bioanalysis and research tools

(10) large-size wood buildings

There will be a roadmap for regulations, standards and standardization necessary for market creation in each area, to be published in December 2019.

Nikkei Biotech news release, May 31, 2019

RIKEN establishes research lab for natural products and chemical Biology in Hangzhou, China

RIKEN held an opening ceremony on April 19, 2019, for a collaborative laboratory on natural products and chemical biology at Hangzhou Future Science and Technology Park. The collaborative laboratory will identify useful substances from natural compounds collected from microorganisms and plants, and conduct research that will lead to drug discovery. Since China is a Kampo/TCM country, there is a large demand for such research, and RIKEN will use this collaborative laboratory as a hub for Chinese natural drug chemistry research, as well as fostering exchange of young science and technology personnel from Japan and China.

RIKEN news release, April 26, 2019

Tohoku Medical Megabank ToMMo and Kyoto University’s CiRA collaborate on iPS cell banking

ToMMo established after the Great Eastern Earthquake so far has analyzed whole genomes of 5000 healthy local people and about 100,000 single nucleotide polymorphisms (SNPs). Since 2016, CiRA and ToMMo started collaborative research and established healthy iPS cells from somatic cells of participants in cohort surveys linked with genomic and health information. Differentiated into various differentiated cells such as neurons and hepatocytes in order to create differentiated cells with the same genome as the participant, genome wide association analysis (GWAS) was conducted to examine the correlation between SNP and health information. The concept is to evaluate disease development risks, drug efficacy and toxicity risks using differentiated cells, and to use this healthy control group for iPS cell research on diseases. CiRA and ToMMo have now successfully established iPS cells on a trial basis from frozen peripheral blood mononuclear cells of six cohort participants. The iPS cells have all satisfied the morphological characteristics of iPS cells, and have expressed the relevant undifferentiated marker genes (NANOG, Otc3 / 4) and transcription factors.

CiRA/Kyoto University news release, April 17, 2019

Kansai University develops iron oxide catalyst for high-performance organosilicon synthesis

Under a NEDO contract, the team of Yasushi ODORU at Kansai University has succeeded to substitute the conventional platinum catalyst for  organosilicon synthesis by a catalyst based on iron oxide nanoparticles coated with DMF. The new catalyst has high activity even in small amounts, and can be recycled by temperature change. It can be used as a catalyst for various types of silane coupling agents, such as for automotive fuel-efficient tire additives.

NEDO news release, April 15, 2019

Nihon Ita Glass to launch PicoGene PCR1100 mobile RT PCR device

The device allows for rapid, high-precision genetic field testing, for instance early inspection of food poisoning by bacteria. The device uses a compact fluorescence detector which applies  the “SELFOC” microlens developed by the company in the 2000s as a unique core technology.

Nikkei Biotech news release, April 12, 2019

© Nihon Ita Glass Co.

Dainippon Sumitomo Pharma to explore iPS-based regenerative medicine for kidney failure

The method is based on the “embryonic organ niche method” developed by the Tokyo Jikei Medical University and others. In this method, human cells are implanted at the organ development site (organ niche) of a baby pig and grown to a normal organ. Nephron precursor cells made from human iPS cells which have differentiated into glomeruli and proximal and distal tubules are injected into the fetal kidney of a genetically modified porcine fetus. The kidney primordia is then transplanted into a patient to promote the maturation of human kidney function. The program is in collaboration with Meiji University which will develop genetically modified pigs, and Bios, a startup company which has succeeded in animal experiments to regenerate functional mature kidneys using the the embryonic organ niche method

Dainippon Sumitomo news release, April 5, 2019

Spiber and wig-maker Aderans plan to produce human wigs from spider silk

Spiber, a spin-out of Keio University and successful in the scale-up of spider silk production, has teamed up with Aderans, a Tokyo-based wig-maker. The two companies plan to jointly develop a new structural material for human wigs based on recombinant spider silk. Aderans will utilize its hair-related technologies to reproduce the unique feel and properties of natural hair. Spider silk does not easily break, and it is expected that the high-tech wigs can be coloured and permed.

Spiber has announced in December 2018 that they have secured Cool Japan Funds to build a new factory in Thailand which will produce several hundred tons of recombinant spider silk from 2021 on.

Spiber press release, March 19, 2019

© Spiber press release, March 19, 2019

Gene Techno Science to develop dental pulp-derived stem cells for treatment of childrens’ diseases

Gene Technos Science Co. shareholders have approved to make Cell Technology, acquired in January 2019, a wholly-owned subsidiary. Cell Technology has a partnership with over 2000 medical institutions across Japan to provide services for dental pulp-derived and other stem cells. It supplies such cells to companies such as Daiichi Sankyo, Eisai, Nikon and Sekisui for research and GeneTechnoscience is preparing to develop this product line further into cell therapeutics. JCR Pharma and Teijin have already implemented Phase I/II clinical tests of dental pulp-derived stem cells for the treatment of acute cerebral infarction in Japan.

Gene Techno Science news release, March 12, 2019

Nikkei Biotech news release, March 15, 2019

RIKEN and Hitachi succeed in automated culture of retinal pigment epithelial (RPE) cell sheets derived from human iPS cells

A joint research team of Hitachi and RIKEN have successfully used a completely closed  automatic cell culture system for culturing RPE cell sheets derived from human iPS cells. using a culture device. By analysis of various markers it was demonstrated that these RPE cell sheets showed the same level of quality as those cultured by skilled technicians.

Hitachi news release, March 14, 2019

© Hitachi and RIKEN

RIKEN researchers prepare adhesive silk by tyrosinase-catalysed oxidation

Hiromitsu SUGAKAWA and colleagues at RIKEN Bioresources Research Center have treated an aqueous silk protein solution with tyrosinase, thereby converting tyrosine residues in silk to DOPA. Amino acid analysis by ninhydrin confirmed that the treated silk contained about 1 mol% of DOPA. The adhesiveness of this DOPA-containing silk protein was greatly improved, especially under basic conditions, probably by interaction between deprotonated lysine and DOPA, as with mussel adhesion protein. DOPA-silk also showed high adhesion to paper, polypropylene resin, wood and silk thin film.

RIKEN news release, March 11, 2019

© RIKEN, Japan